skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Das, Kausik S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Dye sensitized solar cells are a type of thin film solar cell used to convert sunlight into electrical energy. These devices use a different mechanism than conventional solar cells and can be made from materials which are biocompatible and biodegradable. The simplicity of design and small environmental impact of these devices make them a likely candidate for replacing conventional PV devices. Since these solar cells are thin film cells, they can be made to be transparent and can be printed on flexible substrate, allowing their incorporation into many household objects such as windows, backpacks, walls, and other objects which would otherwise not be used for energy generation. A wide variety of fabrication techniques and device designs exist for DSSCs, each having its benefits and deficiencies; it is the purpose of this paper to evaluate some of these design variations, including different semiconductor and dye types and scaffolds, as well as semiconductor surface treatment. 
    more » « less
  4. In this paper we report a unique electrical response of ethanol-adsorbed ZnO films subjected to a constant potential difference. Current measurements were obtained in both dark and illuminated conditions. A significant delay in achieving saturation current was observed indicating a nonlinear and time varying effective resistance; a time-dependent equation describing this behavior was developed, allowing the calculation of a time constant for the transition regime. To determine the role of the surface properties in this behavior, microwave plasma was used to etch the ZnO film by varying degrees, resulting in an enhancement of the resistance switching for extended etching times. 
    more » « less
  5. Dye sensitized solar cells are a type of thin film solar cell used to convert sunlight into electrical energy. These devices use a different mechanism than conventional solar cells and can be made from materials which are biocompatible and biodegradable. The simplicity of design and small environmental impact of these devices make them a likely candidate for replacing conventional PV devices. Since these solar cells are thin film cells, they can be made to be transparent and can be printed on flexible substrate, allowing their incorporation into many household objects such as windows, backpacks, walls, and other objects which would otherwise not be used for energy generation. A wide variety of fabrication techniques and device designs exist for DSSCs, each having its benefits and deficiencies; it is the purpose of this paper to evaluate some of these design variations, including different semiconductor and dye types and scaffolds, as well as semiconductor surface treatment using microwave plasma. 
    more » « less